Differential Equations

Homework 10 (Revised)

(HW 10 will Not be collected but one of the problems will be in Midterm 3)
 (HW 10 solution will be available on $4 / 15$)

Note:

- Please show all of your work (writing a list of answers is not sufficient).
- Please indicate the people you worked with.
- Please staple your HW.
- Several random problems will be graded (1 point each).

1. Determine the period and frequency of the simple harmonic motion (damping coefficient $c=0$) of a $m=0.75 \mathrm{~kg}$ mass on the end of a spring with spring constant $k=48$.
2. A mass of $m=3 \mathrm{~kg}$ is attached to the end of a spring that is stretched 0.2 m by a force of 15 N . At a time $t=0$ the body is pulled 1 m , stretching the spring, and set in motion with an initial velocity of $-10 \mathrm{~m} / \mathrm{s}$.
(a) Find $u(t)$ in the form of $C \cos \left(\omega_{0} t-\delta\right)$
(b) Find the amplitude and period of motion of the body.
3. Suppose that the mass in a mass-spring system with $m=25, c=10$, and $k=226$ is set in motion with $u(0)=20$ and $u^{\prime}(0)=41$.
(a) Find the position function $u(t)$ in the form of single cosine function.
(b) Find the pseudo-period of the oscillation and time-varying amplitude.
4. A mass $m=1 / 2$ is attached to a spring with spring constant $k=4$ and damping coefficient $c=3$. The mass is set in motion with initial position $u(0)=2$ and initial velocity $u^{\prime}(0)=0$. Find $u(t)$ and determine whether the motion is overdamped, critically damped, or underdamped. If it is underdapmed, write $u(t)$ in the form of $C e^{-p t} \cos \left(\omega_{0} t-\delta\right)$.
5. A mass $m=2$ is attached to a spring with spring constant $k=50$ and damping coefficient $c=12$. The mass is set in motion with initial position $u(0)=1$ and initial velocity $u^{\prime}(0)=-7$. Find $u(t)$ and determine whether the motion is overdamped, critically damped, or underdamped. If it is underdapmed, write $u(t)$ in the form of $C e^{-p t} \cos \left(\omega_{0} t-\delta\right)$.
